Code No.: 17531 S

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (Mech. Engg.) VII-Semester Supplementary Examinations, July-2022 Finite Element Analysis

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

	$Part-A (10 \times 2 = 20 Marks)$				
Q. No.	Stem of the question	M	\bigcirc L	СО	PO
1.	List the advantages and disadvantages of finite element method.	2	1	Amount	1
2.	What does discretization means in the finite element method?	2	1	1	3
3.	Write the transformation matrix required to transform local to global displacements of a plane truss element.	2	1	2	3
4.	Show the shape functions of a plane beam element.	2	1	2	4
5.	Differentiate sub-parametric, Iso-parametric and Super parametric finite elements.	2	2	3	1
6.	State the conditions required for axi-symmetric problem formulation and mention any two examples.	2	2	3	3
7.	Define geometric isotropy.	2	levale 1	4	1
8.	Write the numerical integration two point formula.	2	1	4	4
9.	State Hamilton's principle.	2	1	5	1
10.	List the properties of eigen vectors.	2	1	5	2
	Part-B $(5 \times 8 = 40 Marks)$				
11.	For the bar assembly shown in Fig-1, determine the nodal displacements, the forces in each element, and the reaction at the support.	8	2	1	3
	A_1, E_1, L_1 A_2, E_2, L_2 20,000 N				
	$A_1 = 400 \text{ mm}^2$ $A_2 = 225 \text{ mm}^2$ $E_1 = 150 \text{ GPa}$ $E_2 = 100 \text{ GPa}$ $L_1 = 200 \text{ mm}$ $L_2 = 200 \text{ mm}$	149-1 1745			

Code No.: 17531 S

12. The plane truss shown in Fig-2 is subjected to a downward vertical load at node 2. For both elements, A=150 mm²,E=200 GPa. Determine

:: 2 ::

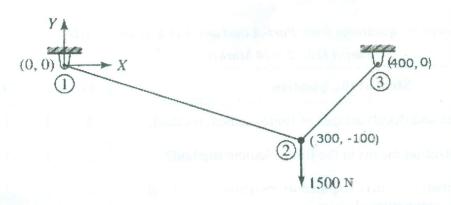


Fig-2

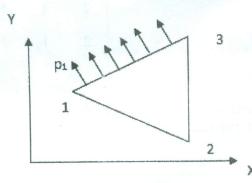
a) The deflection of node 2.

6 2 2 4

b) The axial stress in each element.

2 3 2 3

3


3

- A triangular element is specified by the nodal co-ordinates 1(10,10) mm, 2(50,30) mm and 3(40,60) mm in Cartesian space. Determine the Natural co-ordinates at the point P(30,30) mm.

3

4

- Develop the Load vector for the CST element subjected to uniform pressure on edge 1-3 as shown in Fig-3.
- a 4 3 3 4

Co-ordinates: 1: (20,40) mm

2:(60,10) mm

3: (60,80) mm

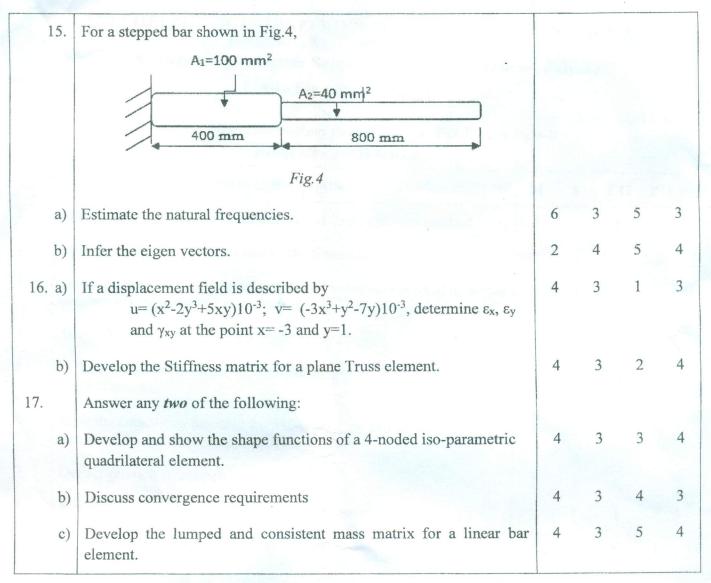

Pressure pt= 6 N/mm2

Fig-3

- 14. a) Show the type of finite elements with their degrees of freedom.
- 4 2 4 1

- Solve the integral I by two point Gaussian quadrature.
- 4 2 4 3

 $I = \int_{-1}^{1} \int_{-1}^{1} (2x^2 + 3xy + 4y^2) dx dy$

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	32.50%
iii)	Blooms Taxonomy Level – 3 & 4	47.50%
